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A general summability method of Fourier series and Fourier transforms is given
with the help of an integrable function % having integrable Fourier transform.
Under some weak conditions on % we show that the maximal operator of the
%-means of a distribution is bounded from Hp(T) to Lp(T) ( p0<p<�) and is of
weak type (1,1), where Hp(T) is the classical Hardy space and p0<1 is depending
only on %. As a consequence we obtain that the %-means of a function f # L1(T)
converge a.e. to f. For the endpoint p0 we get that the maximal operator is of weak
type (Hp0

(T), Lp0
(T)). Moreover, we prove that the %-means are uniformly bounded

on the spaces Hp(T) whenever p0<p<� and are uniformly of weak type
(Hp0

(T), Hp0
(T)). Thus, in the case f # Hp(T), the %-means converge to f in Hp(T)

norm ( p0<p<�). The same results are proved for the conjugate %-means and for
Fourier transforms, too. Some special cases of the %-summation are considered,
such as the Weierstrass, Picar, Bessel, Feje� r, Riemann, de La Valle� e-Poussin,
Rogosinski and Riesz summations. � 2000 Academic Press

Key Words: Hardy spaces; p-atom; atomic decomposition; interpolation; Fourier
transforms; %-summation.

1. INTRODUCTION

The Hardy�Lorentz spaces Hp, q(T) of distributions are introduced with
the Lp, q(T) Lorentz norm of the non-tangential maximal function. Of
course, Hp(T)=Hp, p(T) are the usual Hardy spaces (0<p��).

Butzer and Nessel [3] and recently Bokor, Schipp, Szili and Ve� rtesi [2,
11, 12, 16, 17] considered a general method of summation, the so-called
%-summability. The %-means of Fourier transforms can be written in a
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natural way as a singular integral of the Fourier transform of %, %� (see
Butzer and Nessel [3]). They proved that if %� can be estimated by a non-
increasing integrable function, then the %-means of a function f # L1(R)
converge a.e. to f. This convergence result is also proved there for the
%-means of Fourier series. As special cases they considered the Weierstrass,
Picar, Bessel, Feje� r, de La Valle� e-Poussin and Riesz summations. For
example, they verified that the Riesz means _:, #

T f converge a.e. to f as
T � � if f # L1(R) and #=1, 2 (see also Stein and Weiss [14]).

The author [21] generalized this last result and proved that the maximal
Riesz operator _

*
:, # :=supT>0 |_:, #

T | is bounded from Hp(R) to Lp(R)
provided that 0<:<�, 1�#<�, 1�(min(:, 1)+1)<p<� and, more-
over, it is of weak type (1, 1), i.e.

sup
\>0

\*(_
*
:, #f>\)�C & f &1 ( f # L1(R))

(this last result for :=#=1 can also be found in Zygmund [23] and
Mo� ricz [10]). This weak type inequality assures already the a.e. con-
vergence of the Riesz means mentioned above.

In this paper we generalize these results. First we consider the %-means
of Fourier series and prove that the %-means U %

n f of a function f # L1(T)
can be written also as a singular integral of f and %� over R. We introduce
the maximal operator U

*
% :=supn # N |U %

n |, the conjugate distribution f� , the
conjugate %-means U� %

n f and the conjugate maximal operator U�
*
% .

Under some weak conditions on % and %� we will show that the maximal
operators U

*
% and U�

*
% are bounded from Hp, q(T) to Lp, q(T) whenever

p0<p<�, 0<q�� and are of weak type (1, 1). The parameter p0 is less
than 1 and depending on %. For this endpoint we can verify that the
preceding two maximal operators are of weak type (Hp0

(T), Lp0
(T)).

A usual density argument implies then that U %
n f � f a.e. and U� %

n f � f� a.e.
as n � �, provided that f # L1(T). Note that f� is not necessarily integrable
whenever f is.

We will prove also that the operators U %
n and U� %

n (n # N) are uniformly
bounded in n from Hp, q(T) to Hp, q(T) ( p0<p<�, 0<q��) and are
uniformly of weak type (Hp0

(T), Hp0
(T)). From this it follows that U %

n f � f
and U� %

n f � f� in Hp, q(T) norm (resp. in weak Hp0
(T) norm) as n � �,

whenever f # Hp, q(T) ( p0<p<�, 0<q��) (resp. f # Hp0
(T)).

As special case we investigate ten well known summability methods,
amongst others the summations mentioned above.

We consider also the %-means of Fourier transforms on the real line and
prove all the results above in this context.

I thank the referees for reading the paper carefully and for their useful
comments.
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2. HARDY SPACES AND CONJUGATE FUNCTIONS

Let N denote the none-negative integers, R the real numbers; R+ the
positive real numbers, T :=[&?, ?) and * be the Lebesgue measure. We
also use the notation |I | for the Lebesgue measure of the set I. We briefly
write Lp, q(X) instead of the real Lorentz space Lp, q(X, *) (0<p, q��)
and its norm is denoted by & }&p, q where X=T or R (for the exact defini-
tions see e.g. Weisz [21] and the references there). We extend all functions
on T periodically to R.

Let f be a distribution on C�(T). The n th Fourier coefficient is defined
by f� (n) :=f (e&@nx) where @=- &1. In special case, if f is an integrable
function then

f� (n)=
1

2? |
T

f (x) e&@nx dx (n # N).

The non-tangential maximal function of a distribution f is defined by

f *(x) := sup
0<r<1

| f V Pr(x)|,

where V denotes the convolution and

Pr(x) := :
�

k=&�

r |k|e@kx=
1&r2

1+r2&2r cos x
(x # T)

is the Poisson kernel.
For 0<p, q�� the Hardy�Lorentz space Hp, q(T) consists of all dis-

tributions f for which

& f &Hp, q(T) :=& f *&p, q<�.

Note that in case p=q the usual definition of Hardy spaces Hp, p(T)=
Hp(T) is obtained. For other equivalent definitions we call for Fefferman
and Stein [5] and Stein [15]. Recall that L1(T)/H1, �(T), more exactly,

& f &H1, �(T)=sup
\>0

\*( f *>\)�& f &1 ( f # L1(T)). (1)

Moreover,

Hp, q(T)tLp, q(T) (1<p<�, 0<q��), (2)

where t denotes the equivalence of the norms and spaces (see Fefferman
and Stein [5], Stein [15], Fefferman, Riviere, Sagher [4]).
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The following interpolation result concerning Hardy�Lorentz spaces will
be used several times in this paper (see Fefferman, Riviere, Sagher [4] and
also Weisz [19]).

Theorem A. If a sublinear (resp. linear) operator V is bounded from
Hp0

(T) to Lp0
(T) (resp. to Hp0

(T)) and from Lp1
(T) to Lp1

(T) ( p0�1<p1�
�) then it is also bounded from Hp, q(T) to Lp, q(T) (resp. to Hp, q(T)) if
p0<p<p1 and 0<q��.

For a distribution

ft :
�

k=&�

f� (k) e@kx

the conjugate distribution is defined by

f� t :
�

k=&�

(&@ sign k) f� (k) e @kx.

As is well known, if f is an integrable function then

f� (x)=p.v.
1
? |

T

f (x&t)
2 tan(t�2)

dt := lim
= � 0

1
? |

=<|t|<?

f (x&t)
2 tan(t�2)

dt.

Moreover, the conjugate function f� does exist almost everywhere, but it is
not integrable in general. It is easy to see that ( f� )t=&f.

Fefferman and Stein [5] verified that

& f &Hp(T) t& f &p+& f� &p (0<p<�). (3)

3. %-SUMMABILITY OF FOURIER SERIES

First we introduce the Fourier transform for an integrable function f #
L1(R) by

f� (u)=
1

- 2? |
R

f (x) e&@ux dx (u # R).

The %-summation was considered in Butzer and Nessel [3] and, more
recently Bokor, Schipp, Szili and Ve� rtesi [2, 11, 12, 16, 17] investigated
the uniform convergence of the %-means and some interpolation problems
for continuous functions.
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In what follows we suppose that % # L1(R) is an even continuous function
satisfying %(0)=1, %� # L1(R) and %( }

n+1) # l1 . Note that this last condition
is satisfied if % is non-increasing on R+ or if it has compact support.

Denote by sn f the n th partial sum of the Fourier series of a distribution
f, namely,

sn f (x) := :
n

k=&n

f� (k) e@kx.

The %-means of a distribution f are defined by

U %
n f (x) := :

�

k=&�

% \ k
n+1+ f� (k) e@kx=( f V K %

n)(x) (x # T), (4)

where the K %
n kernels satisfy

K %
n(t) := :

�

k=&�

% \ k
n+1+ e@kt=1+2 :

�

k=1

% \ k
n+1+ cos(kt) (t # T).

It is easy to see that if % has bounded variation then the %-summation is
permanent, i.e. if sn f is convergent in some sense then U %

n f is also con-
vergent and converges to the same limit.

Following Butzer and Nessel [3] and Schipp and Bokor [11] we verify
a new characterization for the %-means. We write U %

n f as a singular integral
of f and the Fourier transform of % over the whole real line.

Lemma 1. If f # L1(T) then

U %
n f (x)=(n+1) |

�

&�
f (x&t) %� ((n+1) t) dt (n # N). (5)

Proof. If f (t)=e@kt then

(n+1) |
�

&�
e @k(x&t)%� ((n+1) t) dt=e@kx |

�

&�
e&@kt�(n+1)%� (t) dt

=% \ k
n+1+ e@kx=U %

n f (x).

Hence the lemma holds also for trigonometric polynomials. Let f be
an arbitrary element from L1(T) and ( fk) be a sequence of trigonometric
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polynomials such that fk � f in L1(T) norm. The condition %( }
n+1) # l1

implies that K %
n # L1(T). Since

U%
n f (x)=

1
2? |

T
f (x&t) K %

n(t) dt

for f # L1(T), we can conclude that U %
n fk � U %

n f in L1(T) norm as k � �.
On the other hand, %� # L1(R), and so

(n+1) |
�

&�
fk(x&t) %� ((n+1) t) dt � (n+1) |

�

&�
f (x&t) %� ((n+1) t) dt

in L1(T) norm as k � �. This finishes the proof of the lemma. K

The conjugate %-means of a distribution f are introduced by

U� %
n f (x) := :

�

k=&�

% \ k
n+1+ (&@ sign k) f� (k) e@kx.

The maximal and conjugate maximal %-operators are defined by

U
*
% f :=sup

n # N

|U %
n f | and U�

*
% f :=sup

n # N

|U� %
n f |,

respectively. Our first boundedness result is the following

Lemma 2. The operator U
*
% is bounded on L�(T).

Proof. The characterization (5) implies that

&U %
n f &��& f &� &%� &1

for all n # N, which shows the lemma. K

In this paper the constants C are depending only on % and the constants
Cp (resp. Cp, q) are depending only on p and % (resp. p, q and %) and may
denote different constants in different contexts.

4. THE BOUNDEDNESS OF THE MAXIMAL %-OPERATOR

A generalized interval on T is either an interval I/T or I=[&?, x) _
[ y, ?). A bounded measurable function a is a p-atom if there exists a
generalized interval I such that
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(i) �I a(x) x j dx=0 where j # N and j�[1�p&1], the integer part
of (1�p&1),

(ii) &a&��|I |&1�p,

(iii) [a{0]/I.

We will use the following two theorems, the first one can be found in
Weisz [21].

Theorem B. Suppose that the operator V is sublinear and, for some
0<p�1,

|
T"8I

|Va| p d*�Cp (6)

for every p-atom a where I is the support of the atom and 8I is the
generalized interval with the same center as I and with length 8 |I |. If V is
bounded from Lp1

(T) to Lp1
(T) for a fixed 1<p1�� then

&Vf &p�Cp & f &Hp(T) ( f # Hp(T)).

We formulate also a weak version of this theorem, which is an easy
modification of a result in Long [8], so we sketch the proof, only.

Theorem C. Suppose that the operator V is sublinear and, for some
0<p<1,

sup
\>0

\ p *([ |Va|>\] & [T"8I])�Cp (7)

for every p-atom a where I denotes again the support of the atom. If V is
bounded from Lp1

(T) to Lp1
(T) for a fixed 1<p1�� then

&Vf &p, ��Cp & f &Hp(T) ( f # Hp(T)).

Proof. If (7) is satisfied without the intersection with [T"8I], then the
result can be found in Long [8, p. 279]. Then

sup
\>0

\ p([ |Va|>\] & [8I])

�|
8I

|Va| p d*�Cp \|T
|Va| p1 d*+

p�p1

|I |1& p�p1�Cp ,

which proves the theorem. K
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Now we are ready to prove the boundedness of the maximal operator on
the Hardy spaces. First we recall a known result, which was shown in
another context. Taking into account (5) we can see that Torchinsky [18,
p. 82�84] has proved essentially the next inequality.

Proposition 1. Assume that there is an even, on R+ non-increasing
function '0 such that |%� |�'0 . If '0 # L1(R) then

sup
\>0

\*(U
*
% f>\)�C & f &1 ( f # L1(T)). (8)

It follows from Proposition 1 and Lemma 2 and by interpolation that

&U
*
% f &p�C & f &p ( f # Lp(T), 1<p��).

If we suppose a little bit more on '0 then we can prove that U
*
% is

bounded from H1(T) to L1(T).

Theorem 1. Assume that there is an even, on R+ non-increasing function
'0 such that |%� |�'0 , t'0(t) is non-increasing on the interval [1, �). If % has
compact support that is contained in [&c, c] and if '0 # L1(R) then

&
*
% f &1�cC & f &H1(T) ( f # H1(T)).

Proof. We will verify (6) for p=1. Then Theorem 1 will follow from
Lemma 2 and Theorem B.

To this end let a be an arbitrary 1-atom with support I and 2&K&1<
|I |�?�2&K (K # N). If t0 is the center of I, then the center of I$ :=I&t0 is
zero. By changing the variables we can see that

|
T"8I

|U
*
% a| p d*=|

T"8I
sup
n # N } |I

a(t) K %
n(x&t) dt }

p

dx

=|
T"8I$

sup
n # N } |I$

a$(t) K %
n(x&t) dt }

p

dx

=|
T"8I$

|U
*
% a$| p d*,

where a$(t) :=a(t+t0).
Hence we can suppose that the center of I is zero. In this case

[&?2&K&2, ?2&K&2]/I/[&?2&K&1, ?2&K&1].
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First suppose that x�0. Then

|
[T"8I] & [x�0]

|U
*
% a(x)| dx� :

2K&1

i=2
|

?(i+1) 2&K

?i2&K
sup

n+1�ri

|U %
n a(x)| dx

+ :
2K&1

i=2
|

?(i+1) 2&K

?i2&K
sup

n+1<ri

|U %
na(x)| dx

=(A)+(B),

where ri :=2Ki&: (i # N) with :>0 chosen later.
By Lemma 1 and by the condition |%� |�'0 we estimate U %

n a as follows:

|U %
na(x)|�(n+1) |

�

&�
|a(t)| '0((n+1)(x&t)) dt.

Then, by the definition of the 1-atom,

sup
n+1�ri

|U %
na(x)|�2Kri :

�

k=&�
|

I+2k?
'0(r i (x&t)) dt :=(A1)(x)+(A2)(x),

where (A1) denotes the term k=0 and (A2) the sum ��
|k|=1 .

If t # I and x # [?i2&K, ?(i+1) 2&K) for some i=2, ..., 2K&1, then

|x&t|�?i2&K&?2&K&1�?(i&1) 2&K. (9)

This implies

(A1)(x)�C2Ki&:'0(i1&:?�2) (x # [?i2&K, ?(i+1) 2&K)).

If t # I+2k? for some k{0 then |x&t|t2 |k| ?. We have

(A2)(x)�C2Ki&: :
�

k=1

'0(2K+1i&:?k)�C |
�

0
'0 d*�C.

Hence, in case 0<:<1,

(A)(x)�C+C2&K :
2K&1

i=2

2Ki&:'0(i1&:?�2)�C |
�

0
'0 d*�C.

Now let us consider (B). Since supp %/[&c, c] and % is bounded, (4)
implies

|Una(x)|�C :
c(n+1)

|k|=0

|â(k)|.
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As

|â(k)|= } 1
2? |

I
a(x)(e&@kx&1) dx }�C |

I
|a(x)| |kx| dx�C |k| |I |

we obtain

sup
n+1<ri

|Una(x)|�cCr2
i 2&K�cC2Ki&2:.

Therefore,

(B)�cC2&K :
2K&1

i=2

2Ki&2:

which is bounded if 1�2<:<1. If x<0 then

|
[T"8I] & [x<0]

|U
*
% a(x)| dx� :

&(2K&1)

i=&2
|

?(i&1) 2&K

?i2&K
sup

n+1�ri

|U %
n a(x)| dx

+ :
&(2K&1)

i=&2
|

?(i&1) 2&K

?i2&K
sup

n+1<ri

|U %
na(x)| dx,

where ri :=2K |i |&:. The inequality

|
[T"8I] & [x<0]

|U
*
% a(x)| dx�cC

can be proved exactly as above. The proof of the theorem is complete. K

Remark. We can extend this result to p<1 as follows. In addition to
the conditions of Theorem 1 suppose that

|
�

0
t(1& p0)(1+=)�(2p0&1) '0(t) p0 dt<� (10)

for some 1�2<p0<1 and =>0. Then we can prove in the same way that

&U
*
% f &p0

�Cp0
& f &Hp0(T) ( f # Hp0

(T))

and

&U
*
% f &p, q�Cp, q & f &Hp, q(T) ( f # Hp, q(T))

for every p0<p<� and 0<q��.
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If p0=1 then condition (10) reduces to the integrability of '0 . Since %� is
bounded, we may suppose that '0 is also bounded. It is easy to see that if
(10) is satisfied for p0 then it holds also for all p0�p�1. The interval
[1, �) in Theorem 1 is a technical condition, only, we could change it to
[c, �) for any c>0.

If we have some information about the derivatives of %� we can prove an
even sharper result. Let %� (k) be denote the k th derivative of %� .

Theorem 2. Assume that there are two even, on R+ non-increasing func-
tions 'N and 'N+1 such that |%� (N)|�'N , 0{|%� (N+1)|�'N+1 , tN+1'N(t) is
non-increasing on [1, �) and tN+2'N+1(t) is non-decreasing on R+ (N # N).
If 'N , 'N+1 # Lp0

(R) for some p0�1�(N+1) then

&U
*
% f &p0

�Cp0
& f &Hp0(T) ( f # Hp0

(T)) (11)

and

&U
*
% f &p, q�Cp, q & f &Hp, q(T) ( f # Hp, q(T)) (12)

for every p0<p<�, 0<q��. In particular, if f # L1(T) then (8) holds.
Moreover, if 'N , 'N+1 # Lp0, �(R) for some p0�1�(N+1) ( p0 {1) then

&U
*
% f &p0, ��Cp0

& f &Hp0(T) ( f # Hp0
(T)) (13)

and (12) and (8) are valid.

Proof. First we show (6) for p= p0 . Let a be an arbitrary p0 -atom with
support I and 2&K&1<|I |�?�2&K (K # N). As in the proof of Theorem 1
we can suppose that the center of I is zero. Let A0(x) :=a(x) (x # R) and

Aj (x) :=|
x

&�
Aj&1(t) dt (x # R; j=1, ..., [1�p&1]+1).

By (i) of the definition of the atom we can show that supp Aj /
��

k=&� [I+2k?] ( j=1, ..., [1�p&1]+1). Moreover, by (ii),

&Aj&��|I |&1�p+ j ( j=1, ..., [1�p&1]+1). (14)

Using Lemma 1 and integrating by parts we can see that

|U %
na(x)|=(n+1)N+1 } |

�

&�
AN(t) %� (N)((n+1)(x&t)) dt }

�(n+1)N+1 |
�

&�
|AN(t)| 'N((n+1)(x&t)) dt. (15)

131%-SUMMATION AND HARDY SPACES



By the conditions of the theorem and (14),

sup
n+1�2K

|U %
n a(x)|�2K�p0+K :

�

k=&�
|

I+2k?
'N(2K (x&t)) dt

=(C)(x)+(D)(x),

where (C) denotes the term k=0 and (B) the sum ��
|k| =1 .

We suppose again that x # [&?, ?)"8I and x�0. If t # I and x #
[?i2&K, ?(i+1) 2&K) (i=2, ..., 2K&1), then (9) implies

(C)(x)�C2K�p0'N+1((i&1) ?) (x # [?i2&K, ?(i+1) 2&K)),

thus

|
[T"8I] & [x�0]

(C)(x) p0 dx�Cp0
2&K :

2K&1

i=2

2K' p0
N+1((i&1) ?)

�Cp0 |
�

0
' p0

N+1 d*�Cp0
.

If t # I+2k? (k{0) then

(D) p0 (x)�Cp0
2K :

�

k=1

' p0
N+1(2K+1?k)�Cp0 |

�

=
' p0

N+1 d*�Cp0

and (6) is satisfied.
Similarly to (15) we can also obtain that

|U %
na(x)|�(n+1)N+2 |

�

&�
|AN+1(t)| 'N+1((n+1)(x&t)) dt

and then supn+1<2K |U %
n a(x)| can be estimated in the same way as

supn+1�2K |U %
na(x)| above. The case x<0 can be treated similarly. This

proves inequality (11).
To prove (13) observe that

\ p0*([(C)>\] & [T"8I])=\ p0 :
i�1: 'N+1(i?)>\2&K�p0

2&K

�C=\ p0 2&K*(['N+1>\2&K�p0])

�C= &'N+1& p0
Lp0 , �(R) .
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Obviously, (D) satisfies also (7). We can estimate supn+1<2K |U %
na(x)|

similarly, which shows (13). The inequality (12) follows from Theorem A.
Applying (1) and (12) for p=1 and q=�, we conclude

&U
*
% f &1, ��C & f &H1, ��C & f &1

which shows (8). This finishes the proof of the theorem. K

Remark. We can weaken the condition tN+1'N(t)z in Theorem 2 by

tN+1'N(t)�tN+1
0 'N(t0) (t�t0�1).

Of course we could replace tN+2'N+1(t)Z also by an analogous condition.
In the next theorem we show the boundedness of U

*
% on Hardy spaces if

tN+2%� (N+1)(t) is bounded.

Theorem 3. Assume that 0{|tN+2%� (N+1)(t)|�C for some N # N. Then
(12) holds for every 1�(N+2)<p<�, 0<q�� and

&U
*
% f &1�(N+2), ��C1�(N+2) & f &H1�(N+2)(T) ( f # H1�(N+2)(T)). (16)

Especially, if f # L1(T) then the weak type (1, 1) inequality (8) holds.

Proof. First we show (12) for 1�(N+2)<p=q�1�(N+1). The general
case of (12) will follow from Theorem A. To this end, by Lemma 1 and
Theorem B we have only to prove that condition (6) is satisfied for
1�(N+2)<p�1�(N+1). Note that in this case [1�p&1]=N.

Let a be an arbitrary p-atom with support I and 2&K&1<|I |�?�2&K

(K # N). We can suppose again that the center of I is zero. As in (15) we
conclude

|U %
na(x)| =(n+1)N+2 } |

�

&�
AN+1(t) %� (N+1)((n+1)(x&t)) dt }

�|I |&1�p+N+1 :
�

k=&�
|

I+2k?
|x&t|&(N+2) dt

:=(E)(x)+(F )(x),

where (E) denotes again the term corresponding to k=0 and (F ) the sum
��

|k|=1 .
If t # I and x # [?i2&K, ?(i+1) 2&K) for some i=2, ..., 2K&1, then (9)

implies

(E)(x)�C2K�pi&(N+2) (x # [?i2&K, ?(i+1) 2&K)) (17)
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and so

|
[T"8I] & [x�0]

(E)(x) p dx� :
2K&1

i=2
|

?(i+1) 2&K

?i2&K
(E)(x) p dx

�Cp 2&K :
2K&1

i=2

2Ki&(N+2) p�Cp .

If t # I+2k? for some k{0 then

(F )(x)�C2&K(&1�p+N+2) :
�

k=1

k&(N+2)�C

and (6) is satisfied automatically. If x<0 then we can show (6) in the same
way.

To prove (16) we have to check (7) for p=1�(N+2). Inequality (17)
implies that

\1�(N+2)*([(E)>\] & [T"8I])=\1�(N+2) :
(2K(N+2)\&1)1�(N+2)

i=1

2&K�1.

Since (F ) satisfies also (7), we have shown (16). Inequality (8) can be
verified by interpolation as in Theorem 2. The proof of the theorem is
complete. K

Notice that by interpolation we get the inequality

& f &Hp, q(T) t& f &p, q+& f� &p, q (0<p<�, 0<q��)

from (3). Since & f &Hp, q t& f� &Hp, q and U� %
n f =U %

n f� , we can extend Theorems
2 and 3 easily to the conjugate maximal operators and to the %-means as
follows.

Theorem 4. Theorems 2 and 3 hold also for the operator U�
*
% instead of

U
*
% . Moreover, if we replace on the left hand side of the inequalities

(11)�(13) and (16) the operator U
*
% by U %

n or U� %
n and the space Lp, q by Hp, q ,

then these inequalities hold uniformly in n.

Since the trigonometric polynomials are dense in L1(T) and in the Hardy
spaces, the inequalities of Theorems 2-4 and the usual density argument
(see Marcinkiewicz, Zygmund [9]) imply

Corollary 1. Under the conditions of Theorem 2 or 3, f # L1(T)
implies

U%
n f � f a.e. and U� %

n f � f� a.e. as n � �.
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Moreover, if e.g. (12) is satisfied, then these two convergence hold in Hp, q

norm, whenever f # Hp, q , if (13) is true, then in Hp0, � norm, whenever
f # Hp0

. From Theorems 3 and 4 we obtain similar convergence results, i.e. if
(16) is satisfied.

Note that f� is not necessarily integrable whenever f is.

5. APPLICATIONS TO VARIOUS SUMMABILITY METHODS

In this section we consider several summability methods introduced in
the book of Butzer and Nessel [3] and some other popular ones as special
cases of the %-summation. Of course, there are a lot of other summability
methods which could be considered as special cases. The elementary com-
putations in the examples below are left to the reader.

Let C0 consists of all continuous functions f, for which lim |x| � � f (x)=
0. Butzer and Nessel [3] verified that if % # C0 and %, %$ and x%"(x) are
integrable functions, then %� # L1(R).

Lemma 3. Suppose that % # L1(R) & C0 is even and each term of
(xi%(x)) (i+1) is integrable for some i�0. Then %� # L1(R) and

|%� (i)(x)|�
C

x i+1 (x # (0, �)).

Proof. The integrability of %� comes from the result above. By integrat-
ing by parts we have

|%� (i)(x)|= } |
�

0
t i%(t) cos tx dt }=1

x } |
�

0
(t i%(t))$ sin tx dt }= } } }

=
1

xi+1 |[%(t) cos tx]�
0 |+

1
xi+1 } |

�

0
(t i%(t)) (i+1) cos tx dt }.

Of course, in the last line probably cos have to changed to sin. K

Our first three examples satisfy the conditions of Lemma 3.

Example 1. Weierstrass summation. Let %1(x)=e&|x|# for some 0<#<
�. It is easy to see that (xie&|x|#) (i+1) # L1(R) for all i�0. The %-means are
given by

U %1
n f (x) := :

�

k=&�

e&(|k|�(n+1))#f� (k) e@kx.
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Of course, we can take another index set than N. For example we can
change ( 1

n+1)# to t:

V %1
t f (x) := :

�

k=&�

e&t |k|# f� (k) e@kx (t # (0, �)),

or e&t by r:

W%1
r f (x) := :

�

k=&�

r |k|#f� (k) e@kx (r # (0, 1)).

By Lemma 3, %1 satisfies the conditions of Theorem 3 for all N # N. This
means e.g. that the operators U

*
%1, V

*
%1 and W

*
%1 are bounded from Hp, q(T)

to Lp, q(T) for every 0<p<� and 0<q��. Moreover, U %1
n f � f a.e. as

n � �, V %1
t f � f a.e. as t � 0 and W %1

r f � f a.e. as r � 1. If #=1 then this
last result is the well known convergence of the Abel means.

Example 2. Picar summation. Let %2(x)=(1+|x| #)&1 for some 1<#<
�. One can check that (xi (1+|x| #)&1) (i+1) # L1(R) for all i�0. The
%-means are given by

U%2
n f (x) := :

�

k=&�

1

1+\ |k|
n+1+

% f� (k) e@kx.

It follows from Lemma 3 that Theorems 3 and 4 and Corollary 1 hold for
this summability method. For example, U

*
%2 is bounded from Hp, q(T) to

Lp, q(T) for every 0<p<� and 0<q��.

Example 3. Bessel assumption. Let %3(x)=(1+x2)&#�2 for some
1<#<�. Again, (xi (1+x2)&#�2) (i+1) # L1(R) for all i�0. The %-means
are given by

U %3
n f (x) := :

�

k=&�

1

\1+\ k
n+1+

2

+
#�2 f� (k) e@kx.

Thus Theorems 3 and 4 and Corollary 1 hold again for every 0<p<�
and 0<q��.

The next six %-functions are special cases of Theorem 3.
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Example 4. Feje� r summation. Let

%4(x)={1&|x|
0

if |x|�1
if |x|>1.

U%4
n is the nth Feje� r operator:

U %4
n f (x) := :

n

k=&n \1&
|k|

n+1+ f� (k) e @kx=
1

n+1
:
n

k=0

sk f (x).

It is know that

%� 4(x)=
1

- 2? \
sin x�2

x�2 +
2

and |%� $4(x)|�C�x2. Consequently, Theorems 3 and 4 and Corollary 1 hold
for N=0.

Example 5. Riemann summation. Let

%5(x)=\sin x�2
x�2 +

2

=- 2? %� 4(x).

Then %� 5(x)=- 2? %4(x)=- 2? max(0, 1&|x| ) and so |%� $5(x)|=1(&1, 1)(x)�
C�x2. The Riemann means are given by

U %5
n f (x) := :

�

k=&� \sin k�(2(n+1))
k�(2(n+1)) +

2

f� (k) e@kx.

If we change 1�(n+1) to + then

V %5
+ f (x) := :

�

k=&� \sin k+�2
k+�2 +

2

f� (k) e@kx (+ # (0, �)).

This yields that the operators U
*
%5 and V

*
%5 are bounded from Hp, q(T) to

Lp, q(T) for every 1�2<p<� and 0<q��. Moreover, U %5
n � f a.e. as

n � � and V %5
+ � f a.e. as + � 0. Note that the Riemann summation was

considered in Bari [1], Zygmund [23], Gevorkyan [6, 7] and also in
Weisz [20].

Example 6. de La Vallee� -Poussin summation. Let

1 if |x|�1�2
%6(x)={&2 |x|+2 if 1�2<|x|�1

0 if |x|>1.
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One can show that U %6
2n+1 f =2U %4

2n+1 f &U %4
n f and since %6(x)=2%4(x)&

%4(2x), we have |%� $6(x)|�C�x2 (cf. Schipp and Bokor [11]). Hence we get
again Theorems 3 and 4 and Corollary 1 for N=0. Note that we could
generalize this summation if we take in the definition of %6 another number
than 1�2.

Example 7. Rogosinski summation. Let

%7(x)={cos ?x�2
0

if |x|�1
if |x|>1

and

U%7
n f (x) := :

n

k=&n

cos \ ? |k|
2(n+1)+ f� (k) e @kx.

Since

%� 7(x)=
sin(x&?�2)

2(x2&(?�2)2)

(see e.g. Schipp and Bokor [11]), we can verify that |%� $7(x)|�C�x2 and so
we obtain Theorems 3 and 4 and Corollary 1 for N=0.

Example 8. Jackson-de La Vallee� -Poussin summation. Let

1&3x2�2+3 |x|3�4 if |x|�1

%8(x)={(2&|x| )3�4 if 1<|x|�2

0 if |x|>2.

One can find in Butzer and Nessel [3] that

%� 8(x)=
3

- 8? \
sin x�2

x�2 +
4

.

Therefore we can show by elementary computations that |%� (i)
8 (x)|�C�x4

for i=0, 1, 2, 3. Consequently, we have the corresponding results with
N=2.

Example 9. The Summation method of cardinal B-splines. For m�2 let

Mm(x) :=
1

(m&1)!
:
l

k=0

(&1)k \m
k+ (x&k)m&1

(x # [l, l+1), l=0, 1, ..., m&1)
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and

%9(x)=
Mm(m�2+mx�2)

Mm(m�2)
.

It is shown in Schipp and Bokor [11] that %9 is even and

%� 9(x)=
1

?mMm(m�2) \
sin x�m

x�m +
m

.

It is easy to see that |%� (i)
9 (x)|�C�xm for i=0, 1, ..., m&1. Thus Theorems

3 and 4 and Corollary 1 hold for N=m&2.
The next example satisfies the conditions of Theorem 2.

Example 10. Riesz summation. Let

%10(x)={(1&|x| #):

0
if |x|�1
if |x|>1

for some 0<:�1�#<�. The Riesz operators are given by

U %10
n f (x) := :

n

k=&n \1& } k
n+1 }

#

+
:

f� (k) e@kx.

We proved in [21] that

|%� 10(x)|, |%� $10(x)|�C�x:+1

As 0<:�1, in Theorem 2 we have N=0. It is easy to see that
C�x:+1 # Lp0

[=, �) if and only if p0>1�(:+1) and C�x:+1 # Lp0, �[=, �) if
and only if p0�1�(:+1). Consequently, (12) holds for 1�(:+1)<p<�
and (13) for 1�(:+1)�p0<� and the endpoints are the same in
Theorem 4 and Corollary 1.

6. %-SUMMATION OF FOURIER TRANSFORMS

In this section we summarize briefly the above results for Fourier trans-
forms. First we introduce the Hardy spaces on the real line.

The Fourier transform of a tempered distribution f is denoted by f� . The
non-tangential maximal function of a tempered distribution is defined by

f *(x) :=sup
t>0

|( f V Pt)(x)|,
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where

Pt(x) :=
ct

t2+x2 (t>0, x # R)

is the non-periodic Poisson kernel.
The Hardy�Lorentz space Hp, q(R) (0<p, q��) consists of all tempered

distributions f for which

& f &Hp, q(R) :=& f *&p, q<�.

For a tempered distribution f # Hp(R) (0<p<�) the Hilbert transform
or the conjugate distribution f� is defined by

f� :=f V 8,

where

8� (u)=&@ sign u, 8(x)=
1

?x
.

We remark that the analogues of (1), (2) and (3) and the analogues of
Theorem A, B and C are true in this case (cf. Weisz [21] and the references
there).

For f # Lp(R) (1�p�2) the %-means are defined by

U %
T f (x)=

1

- 2? |
�

&�
% \ t

T+ f� (t) e@xt dt=( f V K %
T)(x),

where

K%
T (x)=

1

- 2? |
�

&�
% \ t

T+ e @xt dt=T%� (Tx).

Thus the %-means can rewritten as

U%
T f (x)=

1

- 2? |
�

&�
f (t) T%� (T(x&t)) dt.

We extend the definition of the %-means to tempered distributions as
follows:

U %
T f :=f V K %

T (T>0).
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One can show that U %
T f is well defined for all tempered distributions

f # Hp(R) (0<p��) and for all functions f # Lp(R) (1�p��) (cf. Stein
[15]). The definition of the conjugate %-means is

U� %
T f :=f� V K %

T (T>0).

The maximal and conjugate maximal %-operators are introduced by

U
*
% f :=sup

T>0

|U %
T f | and U�

*
% f :=sup

T>0

|U� %
T f |,

respectively.
We can prove all the results of Section 4 also for tempered distributions

and Fourier transforms and for the Hardy spaces Hp, q(R). We do not for-
mulate exactly the theorems and proofs, because they are almost the same
as in Section 4.

Theorem 5. Theorems 1�4, Proposition 1 and Corollary 1 hold also for
the operators U% acting on tempered distributions and defined in this section
and for the Hardy spaces Hp, q(R).

Note that the applications of Section 5 are also special cases of the
%-summation of Fourier transforms, the details are left to the reader.
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